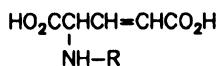
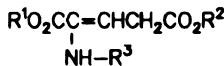


SOME NEW DERIVATIVES OF 2-PENTENEDIOIC ACID

Vladimír TOLMAN^a and Petr SEDMERA^b^a Institute of Nuclear Biology and Radiochemistry,

Academy of Sciences of the Czech Republic, 142 20 Prague 4, The Czech Republic

^b Institute of Microbiology,



Academy of Sciences of the Czech Republic, 142 20 Prague 4, The Czech Republic

Received July 2, 1992

Accepted October 17, 1992

Michael addition of N-acylaminomalonates to propynoic esters led to the (*E*)-4-(N-acylamino)-4-carboxy-2-pentenedioic triesters *IIa* – *IIf*. On deprotection and decarboxylation, these compounds afforded 2-(N-acylamino)-2-pentenedioic acid derivatives *IIIa* – *IIIc*. Dimethyl (*E*)-4-diazo-2-pentenedioate (*IV*) was prepared by direct transfer of the diazo group. On treatment of *IV* with 4-toluenesulfonic acid, 2-(4-toluenesulfonyloxy)-2-pentenedioate (*V*) was formed. Iodination of (*E*)-2-pentenedioic acid led directly to the 2,4-diido derivative *VII*. From dimethyl (*E*)-4-oxo-2-pentenedioate the oximino ester *VIIia* and the free oximino acid *VIIib* were prepared.

In the course of our syntheses of diverse 3,4-unsaturated aliphatic amino acids¹, many attempts were carried out to prepare the yet unknown olefinic analogue of glutamic acid, i.e. 4-amino-2-pentenedioic acid (*Ia*). During these experiments, which all unfortunately failed in the final stage (most probably due to the apparent instability of *Ia* – *Ic*) some new derivatives of 2-pentenedioic acid were synthesized and characterized.

Ia, R = H*Ib*, R = COCH₃*Ic*, R = CHO*IIIa*, R¹ = R² = H; R³ = COCH₃*IIIb*, R¹ = H; R² = C₂H₅; R³ = COCH₃*IIIc*, R¹ = R² = H; R³ = CHO*IIId*, R¹ = R² = CH₃; R³ = COCH₃

Addition of N-acylaminomalononic esters to propynoic acid esters, catalyzed by KF/18-crown-6 (ref.²), afforded the 4-(N-acylamino)-4-carboxy-2-pentenedioic acid triesters *IIa* – *IIf* in high yields (see Scheme 1). NMR analyses showed the compounds *IIa* – *IIf* to be exclusively of the *E* configuration (*J* = 15.6 – 15.9 Hz).

All attempts to convert the adducts *IIa*–*IIf* into the acids *Ib* and *Ic* either by basic hydrolysis (*IIa*–*IIc*) or by acidolysis (*IID*–*IIf*) gave, instead of them, the isomeric compounds *IIIa*–*IIIc* only. A mechanism for this kind of isomerisation had been suggested³. Prepared compounds *IIa*–*IIf* and *IIIa*–*IIIc* are listed in Table I.

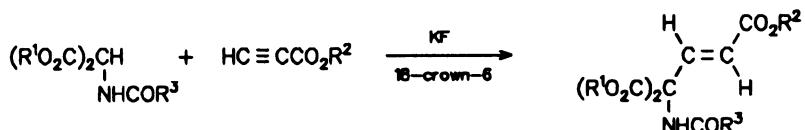
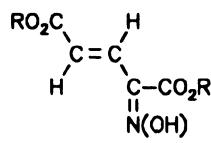
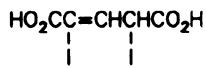
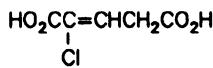
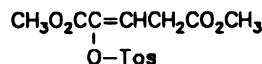
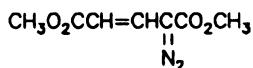


Further experiments were directed to the preparation of the 2-pentenedioic acid derivatives, suitably substituted at C-4. Thus, dimethyl (*E*)-4-diazo-2-pentenedioate (*IV*) was prepared from the unsubstituted diester by diazo group transfer⁵, using 4-toluenesulfonylazide. Treatment of *IV* with 4-toluenesulfonic acid⁶ in acetonitrile gave dimethyl 2-(4-toluenesulfonyloxy)-2-pentenedioate (*V*); as a byproduct, ester *IID* was also isolated, which apparently arose from the reaction between *IV* and the solvent.

TABLE I
Triesters *IIa*–*IIf* and acids *IIIa*–*IIIc*

Compound	M. p., °C Yield, %	Formula (M. w.)	Calculated/Found		
			% C	% H	% N
<i>IIa</i>	110.5–111.5 ^a 70	C ₁₁ H ₁₅ NO ₇ (273.2)	48.35 48.28	5.53 5.68	5.13 5.08
<i>IIb</i>	143–144.5 ^b 90	C ₁₄ H ₂₁ NO ₇ (315.3)	53.32 53.53	6.71 6.80	4.43 4.32
<i>IIc</i>	oil ^c 86	C ₁₄ H ₂₁ NO ₇ (315.3)	53.32 53.20	6.71 6.81	4.43 4.34
<i>IID</i>	141–142 ^b 89	C ₁₈ H ₂₉ NO ₇ (371.4)	58.20 58.49	7.87 8.00	3.77 3.69
<i>IIe</i>	127–129 ^d 71	C ₁₉ H ₃₁ NO ₇ (385.5)	59.20 59.56	8.11 8.23	3.63 3.53
<i>IIf</i>	128–129 ^e 81	C ₂₀ H ₃₃ NO ₇ (399.5)	60.12 60.09	8.33 8.40	3.51 3.42
<i>IIIa</i>	183–184 ^{f,g} 46 ^h , 82 ⁱ	C ₇ H ₉ NO ₅ (187.2)	44.92 44.85	4.85 5.01	7.49 7.35
<i>IIIb</i>	142–144 ^j 91 ^k	C ₉ H ₁₃ NO ₅ (215.2)	50.23 49.89	6.09 6.16	6.51 6.41
<i>IIIc</i>	147–149 ^l 86 ^m	C ₆ H ₇ NO ₅ (173.1)	41.62 41.42	4.08 4.09	8.09 8.18






^a 2-Propanol–ether; ^b benzene–hexane; ^c ref.⁴, b.p. 140–145 °C/5 Pa (but undistillable in our hands); ^d heptane; ^e hexane; ^f ethanol–petroleum ether 60–70 °C; ^g ref.³, m.p. 175–176 °C; ^h from *IIa* or *IIc*, method A; ⁱ from *IIf*, method B; ^j ethanol–ether–petroleum ether; ^k from *IID*, method B; ^l water; ^m from *IIe*, method B.

Attempts were also made to prepare 4-halogeno derivatives of 2-pentenedioic acid. Reactions between *IV* and hydrogen chloride (or hydrogen bromide) gave only complicated and unseparable mixtures. The previously so-called "4-chloroglutamic acid" (see ref.⁷) was identified by NMR analysis as the 2-chloro isomer *VI*. Iodination of (*E*)-2-pentenedioic acid by I_2/HIO_3 gave directly the 2,4-diido derivative *VII*, even when one equivalent of the iodination reagent was used.

SCHEME 1

Finally, dimethyl (*E*)-4-oxo-2-pentenedioate⁸ was converted into the oximino ester *VIIIa*, which was then saponified to the free acid *VIIIb*. None of these two compounds could be successfully reduced to *Ia*.

EXPERIMENTAL

Melting points were determined on a Büchi SMP-20 apparatus and were uncorrected. NMR spectra were measured on the Jeol FX-60 FT NMR spectrometer (59.797 and 15.036 MHz for ^1H and ^{13}C , respectively) at 25 °C in the solvents indicated; tetramethylsilane served as an internal standard. Carbon signal multiplicities were determined from SFORD (Single Frequency Off-Resonance Decoupling) spectra. Chemical shifts are given in ppm (δ -scale), coupling constants (J) in Hz.

(E)-4-(N-Acylamino)-4-carboxy-2-pentenedioic Esters (*IIa* – *IIf*)

18-Crown-6 (130 mg, 0.5 mmol) and dry potassium fluoride (120 mg, 2.1 mmol) were added to a solution (or suspension) of the N-acylaminomalonic acid diester (10 mmol) in dry acetonitrile (10 ml). After 10 min stirring, the propynoic acid ester (11 mmol) was slowly dropped in under cooling with tap water. The mixture was then stirred at room temperature overnight (for *IIe* and *IIf*, the mixture was refluxed for 2 h), evaporated to dryness and the residue was dissolved in ethyl acetate (30 ml). The coloured solution was then repeatedly washed with saturated solution of sodium bicarbonate and water (until the aqueous washings were almost colourless), dried with sodium sulfate and evaporated. Alternatively (as used for *IIb*), the reaction mixture was poured into cold water (50 ml), the product was filtered, washed well with cold water and dried. The crude product was recrystallized, if necessary, from the solvent indicated in Table I.

Compound IIa, ^1H NMR spectrum (CDCl_3): 2.10 s, 3 H (CH_3CO); 3.75 s, 3 H (COOCH_3); 3.83 s, 6 H (2 \times COOCH_3); 5.94 and 7.47, AB (2 \times $=\text{CH}-$, $J(\text{A},\text{B})$ = 15.9); 7.00 brs, 1 H (N-H). ^{13}C NMR spectrum (CDCl_3): 22.7 q, 51.9 q, 54.2 q (2 C), 66.7 s, 122.5 d, 140.9 d, 165.8 s, 166.4 s, 169.0 s (2 C).

Compound IIb, ^1H NMR spectrum (CDCl_3): 1.47 s, 9 H ((CH_3)₃C); 2.10 s, 3 H (CH_3CO); 3.83 s, 6 H (2 \times COOCH_3); 5.84 and 7.32, AB (2 \times $=\text{CH}-$, $J(\text{A},\text{B})$ = 15.9); 6.97 s, 1 H (N-H). ^{13}C NMR spectrum (CDCl_3): 22.7 q, 28.1 q (3 C), 54.1 q (2 C), 66.7 s, 124.6 d, 139.3 d, 164.6 s, 166.6 s, 168.9 s, 169.1 s.

Compound IIc, ^1H NMR spectrum (CDCl_3): 1.29 t, 9 H (3 \times $\text{COOCH}_2\text{CH}_3$, J = 7.3); 2.10 s, 3 H (CH_3CO); 4.21 q, 2 H ($\text{COOCH}_2\text{CH}_3$, J = 7.3); 4.29 q, 4 H (2 \times $\text{COOCH}_2\text{CH}_3$, J = 7.3); 5.94 and 7.47, AB (2 \times $=\text{CH}-$, $J(\text{A},\text{B})$ = 15.9); 7.02 brs, 1 H (N-H). ^{13}C NMR spectrum (CDCl_3): 14.0 q (2 C), 14.3 q, 22.7 q, 61.0 t (2 C), 63.5 t, 66.9 s, 122.8 d, 140.9 d, 165.6 s, 166.1 s (2 C), 168.9 s.

Compound IId, ^1H NMR spectrum (CDCl_3): 1.29 t, 3 H ($\text{COOCH}_2\text{CH}_3$, J = 7.3); 1.48 s, 18 H (2 \times (CH_3)₃C); 2.08 s, 3 H (CH_3CO); 4.19 q, 2 H ($\text{COOCH}_2\text{CH}_3$, J = 7.3); 5.90 and 7.40, AB (2 \times $=\text{CH}-$, $J(\text{A},\text{B})$ = 15.9); 6.89 brs, 1 H (N-H). ^{13}C NMR spectrum (CDCl_3): 14.2 q, 22.8 q, 27.7 q (6 C), 60.7 t, 67.5 s, 84.3 s (2 C), 122.2 d, 141.6 d, 164.9 s (2 C), 165.7 s, 168.5 s.

Compound IIe, ^1H NMR spectrum (CDCl_3): 1.47 s, 27 H (3 \times (CH_3)₃C); 5.84 and 7.27, AB (2 \times $=\text{CH}-$, $J(\text{A},\text{B})$ = 15.9); 7.04 s, 1 H (N-H); 8.23 s, 1 H (COOH). ^{13}C NMR spectrum (CDCl_3): 27.7 q (3 C), 28.1 q (6 C), 67.1 s, 84.6 s, 124.4 d, 139.3 d, 159.3 d, 164.6 s, 177.5 s (2 C).

Compound IIIf, ^1H NMR spectrum (CDCl_3): 1.49 s, 27 H (3 \times (CH_3)₃C); 2.10 s, 3 H (CH_3CO); 5.82 and 7.27 d, AB (2 \times $=\text{CH}-$, $J(\text{A},\text{B})$ = 15.6); 6.87 brs, 1 H (N-H). ^{13}C NMR spectrum (CDCl_3): 22.9 q, 27.7 q (6 C), 28.1 q (3 C), 65.1 s, 80.8 s, 84.2 s (2 C), 123.8 d, 140.2 d, 165.0 s, 177.4 s, 178.2 s (2 C).

2-(N-Acylamino)-2-pentenedioic Acid Derivatives (*IIIa* – *IIIc*)

A) Saponification of *IIa* or *IIc*. The title compound (10 mmol) was dissolved in methanol (20 ml), 2.5 M aqueous sodium hydroxide (16 ml; 40 mmol) was added and the solution was stirred overnight. Methanol was evaporated in *vacuo*, water (15 ml) was added to dissolve the suspended salt and the solution was stirred with moist Dowex 50 \times 8 (100 – 200 mesh; H^+ -cycle; 40 ml) for 3 h. The filtrate was evaporated and the crude *IIIa* recrystallized.

B) Acidolysis of *II*d – *II*f. The compound (2 mmol) was dissolved in trifluoroacetic acid (5 ml), allowed to stand at laboratory temperature for 2 h, evaporated in *vacuo*, dry ether (5 ml) added and evaporated again. The crude *III*a – *III*c were recrystallized, as shown in Table I.

*Compound III*a, ^1H NMR spectrum (CD_3SOCD_3): 1.97 s, 3 H (CH_3CO); 3.13 mt, 2 H; 6.80 mt, 1 H. ^{13}C NMR spectrum (CD_3SOCD_3): 22.6 q, 34.0 t, 128.9 s, 133.8 d, 171.1 s, 174.9 s, 175.1 s.

*Compound III*b, ^1H NMR spectrum (CD_3COCD_3): 1.25 t, 3 H ($\text{CH}_3\text{CH}_2\text{O}$, $J = 7.3$); 2.08 s, 3 H (CH_3CO); 3.25 d, 2 H ($J = 7.2$); 4.14 q, 2 H ($\text{CH}_3\text{CH}_2\text{O}$, $J = 7.3$); 6.32 t, 1 H ($=\text{CH}-$, $J = 7.2$); 8.45 brs, 1 H (N-H). ^{13}C NMR spectrum (CD_3COCD_3): 14.4 q, 22.9 q, 34.4 t, 61.2 t, 128.8 d, 128.9 s, 165.7 s, 168.9 s, 170.9 s.

*Compound III*c, ^1H NMR spectrum ($\text{CDCl}_3 + \text{CD}_3\text{OD}$, 4 : 1): 3.20 d, 2 H ($J = 7.0$); 6.96 t, 1 H ($=\text{CH}-$, $J = 7.0$); 8.15 s, 1 H. ^{13}C NMR spectrum ($\text{CDCl}_3 + \text{CD}_3\text{OD}$, 4 : 1): 34.0 t, 125.8 s, 129.4 d, 159.8 d, 165.2 s, 172.0 s.

Dimethyl (*E*)-4-Diazo-2-pentenedioate (*IV*)

Triethylamine (15.2 g, 0.15 mol) in dry ether (45 ml) was added dropwise during 2 h to a stirred solution of dimethyl (*E*)-2-pentenedioate (23.7 g, 0.15 mol) and 4-toluenesulfonylazide (29.6 g, 0.15 mol) in dry ether (150 ml), cooled to 5 °C. Stirring and cooling was then continued for 1.5 h (the bath temperature rose to 10 °C during this period), the orange mixture was poured into hexane (500 ml) and kept overnight at 5 °C. The filtered solution was evaporated, the residue dissolved in benzene (50 ml) and chromatographed on a silica gel column (42 × 2.5 cm, eluted with benzene). Yield, 18.5 g (67%) of compound *IV*, m.p. 69 – 72 °C; from petroleum ether (30 – 40 °C), m.p. 72 – 73 °C. ^1H NMR spectrum (CDCl_3): 3.76 s, 3 H (COOCH_3); 3.86 s, 3 H (COOCH_3); 5.76 d, 1 H ($=\text{CH}-$, $J = 15.9$); 7.35 d, 1 H ($=\text{CH}-$, $J = 15.9$). ^{13}C NMR spectrum (CDCl_3): 51.6 q, 52.6 q, 111.4 d, 127.6 s, 131.0 d, 163.6 s, 166.5 s. For $\text{C}_7\text{H}_8\text{N}_2\text{O}_4$ (184.2) calculated: 45.64% C, 4.38% H, 15.22% N; found: 45.66% C, 4.20% H, 15.15% N.

Dimethyl 2-(4-Toluenesulfonyloxy)-2-pentenedioate (*V*)

Ester *IV* (1.84 g, 10 mmol) was added during 5 min to a solution of 4-toluenesulfonic acid (1.89 g, 11 mmol) in dry acetonitrile (10 ml). The mixture, from which nitrogen was evolved was stirred at laboratory temperature for 1 h, evaporated in *vacuo*, taken into ethyl acetate (30 ml), washed with a little sodium hydrogen carbonate solution, water and dried. After evaporation, the dark yellow oil was dissolved in benzene (1 ml) and flash-chromatographed on a silica gel column (26 × 1.5 cm). On elution with benzene, containing 1% of methanol, two products were isolated.

Compound V: oily, slowly solidified, 700 mg (21%), m.p. 50 – 54 °C; from benzene–hexane, m.p. 56 – 58 °C. ^1H NMR spectrum (CDCl_3): 2.44 s, 3 H ($=\text{C}-\text{CH}_3$); 3.28 d, 2 H (CH_2 , $J = 7.3$); 3.64 s, 3 H (COOCH_3); 3.70 s, 3 H (COOCH_3); 6.91 t, 1 H ($=\text{CH}-$, $J = 7.3$); 7.36 and 7.85, AA'BB', 4 H (Tos, $\Sigma J = 8.5$). ^{13}C NMR spectrum (CDCl_3): 21.1 q, 31.2 t, 51.6 q, 51.9 q, 127.2 d, 127.9 d (2 C), 129.3 d (2 C), 132.3 s, 137.8 s, 148.3 s, 160.9 s, 168.9 s. For $\text{C}_{14}\text{H}_{16}\text{O}_7\text{S}$ (328.3) calculated: 51.21% C, 4.91% H, 9.76% S; found: 51.38% C, 4.77% H, 9.51% S.

*Compound II*d: crystalline, 340 mg (16%), m.p. 97 – 101 °C; from benzene–petroleum ether (40 – 60 °C), m.p. 103 – 104 °C. ^1H NMR spectrum (CDCl_3): 2.13 s, 3 H (CH_3CO); 3.25 d, 2 H (CH_2 , $J = 7.3$); 3.72 s, 3 H (COOCH_3); 3.80 s, 3 H (COOCH_3); 6.88 t, 1 H ($=\text{CH}-$, $J = 7.3$); 7.31 brs, 1 H (N-H). ^{13}C NMR spectrum (CDCl_3): 23.5 q, 34.3 t, 52.1 q, 52.6 q, 126.8 s, 127.7 d, 164.8 s, 170.9 s. For $\text{C}_9\text{H}_{13}\text{NO}_5$ (215.2) calculated: 50.23% C, 6.09% H, 6.51% N; found: 50.17% C, 6.20% H, 6.31% N.

Dimethyl (E)-4-Oximino-2-pentenedioate (VIIIa)

The starting compound, dimethyl 4-oxo-2-pentenedioate⁸, m.p. 60 – 61 °C, was characterized spectroscopically and found to posses *E* configuration. ¹H NMR spectrum (CDCl₃): 3.84 s, 3 H (COOCH₃); 3.94 s, 3 H (COOCH₃); 6.98 d, 1 H (=CH-, *J* = 16.0); 7.63 d, 1 H (=CH-, *J* = 16.0). ¹³C NMR spectrum (CDCl₃): 52.5 q, 53.2 q, 134.2 d, 135.4 d, 161.1 s, 165.1 s, 182.2 s. Hydroxylamine hydrochloride (4.17 g, 60 mmol) was dissolved in methanol (40 ml), dimethyl (E)-4-oxo-2-pentenedioate (5.16 g, 30 mmol) was added and the solution refluxed for 4 h. After evaporation in vacuo, the residue was extracted with ethyl acetate (3 × 20 ml), the extracts were washed with a little water, dried with magnesium sulfate and evaporated. The crude product was taken into benzene (16 ml), filtered and hot petroleum ether (fraction 60 – 70 °C, 20 ml) was added. The separated crystals were washed with petroleum ether; yield, 4.55 g (81%), m.p. 108 – 110 °C. The sample for analysis had m.p. 112 – 115 °C (benzene–petroleum ether). ¹H NMR spectrum (CDCl₃): 3.82 s, 3 H (COOCH₃); 3.91 s, 3 H (COOCH₃); 7.08 and 7.70, AB (2 × =CH-, *J*(A,B) = 16.5). ¹³C NMR spectrum (CDCl₃): 52.1 q, 52.9 q, 126.7 d, 129.2 d, 162.6 s, 166.8 s, 176.9 s. For C₇H₉NO₅ (187.2) calculated: 44.92% C, 4.85% H, 7.49% N; found: 44.94% C, 4.94% H, 7.43% N.

(E)-4-Oximino-2-pentenedioic Acid (VIIIb)

The ester VIIIa (1.12 g, 6 mmol) and 1 M sodium hydroxide (18 ml) was stirred at 70 °C for 10 min, cooled, acidified with 5 M hydrochloric acid (3.5 ml), extracted with ethyl acetate (3 × 15 ml), dried and evaporated to give 0.90 g (95%) of VIIIb, m.p. 160 – 161 °C; from ethyl acetate–petroleum ether, m.p. 162 – 163 °C. ¹H NMR spectrum (CD₃OD): 6.96 and 7.67, AB (2 × =CH-, *J*(A,B) = 16.5). ¹³C NMR spectrum (CD₃OD): 128.5 d, 129.3 d, 146.5 s, 165.8 s, 170.0 s. For C₅H₅NO₅ (159.1) calculated: 37.74% C, 3.17% H, 8.81% N; found: 37.74% C, 3.40% H, 8.54% N.

2-Chloro-2-pentenedioic Acid (VI)

The compound, prepared according to ref.⁷ in 32% overall yield, was identified and characterized by its NMR spectra, which fully confirmed the structure VI; m.p. 152 – 155 °C (ref.⁹, m.p. 156 – 157 °C). ¹H NMR spectrum (CD₃OD): 3.41 d, 2 H (CH₂, *J* = 6.8); 7.27 t, 1 H (=CH-, *J* = 6.8). ¹³C NMR spectrum (CD₃OD): 35.6 t, 135.4 d, 142.7 s, 165.2 s, 173.1 s.

2,4-Diiodo-2-pentenedioic Acid (VII)

(E)-2-Pentenedioic acid (16.25 g; 125 mmol) and iodine (12.7 g; 50 mmol) were dissolved in ethanol (100 ml), iodic acid (11.0 g; 62.5 mmol) in water (25 ml) was added and the mixture was vigorously stirred for 20 h. The resulting dark yellow solution was evaporated in vacuo, the residue was taken into warm chloroform (20 ml) and the turbid solution was decanted from the dark-coloured impurities, which were extracted with a second portion of chloroform (10 ml). The combined chloroform solutions were cooled for 3 days at –15 °C, the product was filtered, washed well with cold chloroform and dried to give 14.43 g (30%) of yellow VII, m.p. 140 – 141 °C. The mother liquor was evaporated and the residue taken into dichloromethane (10 ml) to give, after freezing, another portion of VII, amounting 2.52 g (5%), m.p. 142 – 144 °C. Total yield, 16.95 g (35%); due to its instability in solution, the compound could not be purified for analysis. ¹H NMR spectrum (CD₃OD): 5.23 d, 1 H; (=CH-, *J* = 9.8); 7.55 d, 1 H (=CH-, *J* = 9.8). ¹³C NMR spectrum (CD₃OD): 22.5 d, 99.5 s, 143.5 d, 165.7 s, 172.1 s. For C₅H₄I₂O₄ (381.9) calculated: 15.72% C, 1.06% H, 66.46% I; found: 16.55% C, 1.24% H, 64.40% I.

REFERENCES

1. Tolman V., Sedmera P.: *Tetrahedron Lett.* **29**, 6183 (1988).
2. Belsky I.: *J. Chem. Soc., Chem. Commun.* **1977**, 237.
3. Kishida Y., Terada A.: *Chem. Pharm. Bull.* **17**, 2417 (1969).
4. Birkofser L., Hempel K.: *Chem. Ber.* **96**, 1373 (1963).
5. Regitz M.: *Angew. Chem., Int. Ed. Engl.* **6**, 733 (1967).
6. Reichstein T., Schindler W.: *Helv. Chim. Acta* **23**, 669 (1940).
7. Urushibara Y.: *Bull. Chem. Soc. Jpn.* **3**, 200 (1928).
8. Corey E. J., Tramontano A.: *J. Am. Chem. Soc.* **103**, 5599 (1981).
9. Le Corre M.: *Ann. Chim. (Paris)* **3**, 193 (1968).

Translated by the author (V. T.).